Snowmass TDAQ Subgroup Update

Darin Acosta (Florida), Wes Ketchum (FNAL), and Stephanie Majewski (Oregon)

26 Jan 2021

Currently planning for three (four?) white papers

"Artificial Intelligence and Machine Learning in Trigger and DAQ"

- Big and popular topic, so depending on community feedback consider split to two white papers? e.g. "AI/ML at the edge" and "AI/ML in High-level triggers, event-filtering, and detector control"
- Work closely with IF07 (especially on the former) and computing frontier (especially on the latter)

"Innovating Trigger and DAQ for the next generation of detectors"

- Include TDAQ architecture and infrastructure (e.g. streaming DAQ), fast computation on heterogeneous computing, fast timing, trigger-aware ASIC development (work with IF07)
- Natural place for ideas not specific to AI/ML (e.g. fast tracking triggers, fast spectral analysis), and a way to tie-in needs of future experiments

"Readout technologies for future detectors"

Include wireless readout, rad-hard links, multiplexed high-speed readout (with IF7)

Next steps

Finalize reaching out to all LOI authors

Include two suggested ML-oriented 'orphans' from the list (#061, #084), though both seem more geared towards offline applications

Reach out to TDAQ group as a whole as well, to advertise this plan, along with the plans for a 'pause/slowdown/etc.'

Work towards assigning editors

Have ideas, but considering timing of this: would it be better to formalize 'editors' after we come out of the 'pause'?

Real-time processing hardware

- System on chip/readout-integrated ASICs for triggering, feature extraction, self-calibration, etc. (Mostafanezhad et al., Miryala et al., Miller et al 132)
 - Miryala discusses some specific issues, like non-volatile memory and co-design
 - Miller highlights need for Multi-Processor SoC and FPGA for DL/Al needs

FPGAs for ML inference (Miller et al 132, Herbst et al)

Triggering techniques/algorithms

- Charged-particle track trigger algorithm in FPGA (Kotwal)
- Self-driving triggers for automated/adaptive data selection (Miller et al. 72)
- Real-time adaptive deep-learning with embedded systems (Miller et al. 132)
- Extending scalable readout systems (SRS) for better/more programmable triggering (Muller et al.)
- Asynchronous L1 triggers for Colliders (Acosta et al.)
 - Requires precise/synchronized/stable timing
- Non Von-Neumann neuromorphic computing (Miryala et al., 180)
 - Overlaps with Event-driven processing

TDAQ AI/ML focused LOIs

- Inference applications
 - Fast inference, heterogenous acceleration, ML as a service (Acosta Flechas et al., 128)
 - FPGA-based edge AI (R.Herbst et al., 121)
 - High speed instrumentation for front-end DAQ (Mostafanezhad et al, 132)
- New techniques
 - Non Von-Neumann neuromorphic computing, non-volatile memory (Miryala et al., 180)
 - Self-driving trigger for automated/adaptive data selection (Miller et al, 72)
 - Real-time adaptive deep-learning with embedded systems (Miller et al, 132)
- Experiment focused needs:
 - O DUNE, low energy events (Balantekin et al, 167)
 - Project 8, tracking (Oblath, 46),

Data links/readout

- Wireless
 - Data transfer for Colliders (Zhang et al. 4)
- Rad-hard links
 - Photonics-based links (Zhang et al. 7)
- Wavelength division multiplexing (Garcia-Sciveres et al)
 - Also with photonics chips in detector

Experiment/detector-specific DAQ needs

- Project 8 DAQ (Oblath)
 - Real-time spectral analysis and tracking for trigger/data reduction (compute-intensive)
- Low-energy events in DUNE (Karagiorgi et al.)
 - Largely improved algorithms and data compression to extend low-energy sensitivity
- Belle-II upgrades (Vahsen et al)
 - DAQ upgrades underway for increased rates, timing upgrades envisioned for long-lived particle triggers(?)
- Optical instrumentation for EM calorimeters (Rutchi et al)
- Muon Scintillator R&D for Higgs factory/long-lived particle searches (Wang et al)
- Large Scintillator Arrays (Young et al)
 - Signal coincidence and >100 ps timing resolution (for position reco)
- TRACK-BASED TRIGGERS FOR EXOTIC SIGNATURES (Holmes et al., 8)

Additional items

- This is must but not all of the LOIs: particularly, still reviewing the LOIs submitted outside the IF
 - Includes mostly some summary LOIs for future experiments (e.g. PUMA, Mu2e), and Fast ML for triggering and computing frontier: still needs a closer read/look for synergies to other efforts
 - These ones may be the more surprising ones for us, but on brief look looks as expected
- We had a lot of good discussion on related/different items at workshop before the LOI deadline
 - o Minutes:

https://docs.google.com/document/d/17Bqt2NUEWjjmTtOYp6YqVAGdYD4JhHc3SiSpWtKm4M4 /edit?usp=sharing

Topic/Category Ideas

- Use of Al/ML in TDAQ
 - Lump everything together first, and see where the natural splits arise?
- Discussion/coordination with IF07
 - Trigger-aware ASIC development
 - Include links? Specialized hardware? Ties to readout bandwidth
 - need to discuss with IF07 and cross-cutting group on how to push forward
 - Readout technology for the next generation of detectors
 - Wireless, rad-hard,
- Streaming DAQ, "Triggerless" systems, fast computing and processing for trigger needs: both 'off-the-shelf' and custom (computing model, heterogeneous hardware, parallelization, track trigger specifically, fast spectral analysis for large arrays?, AI/ML connections)
- Hopefully above leads to ... TDAQ Infrastructure/architecture: Asynchronous at the first level, control/signals for large distributed systems, "IOT"
- Fast timing and synchronization/distribution to front-end electronics
 - Maybe followup with liaisons/other frontiers and ask for related LOIs